US009424081B2

a2z United States Patent (10) Patent No.: US 9,424,081 B2
Bond 45) Date of Patent: Aug. 23,2016
(54) MANAGING CALLBACK OPERATIONS IN 7,496,495 B2 2/2009 Solomon et al.
EMULATED ENVIRONMENTS 7,565,279 B2 7/2009 Bordes
7,657,890 B2* 2/2010 Kanai GOGF 9/45533
(71) Applicant: MICROSOFT TECHNOLOGY 711/100
LICENSING, LLC, Redmond, WA 7,818,746 B2* 10/2010 Anderson GOGF 11/3428
(US) 702/108
7,827,559 B1* 11/2010 Rheecccoeveennne GOGF 9/526
(72) Inventor: Barry Clayton Bond, Redmond, WA 718/102
(US) 8,127,301 B1* 2/2012 Waldspurger GOGF 9/45533
718/1
(73) Assignee: Microsoft Technology Licensing, LL.C, 8,136,104 B2* 3/2012 Papakipos GOGF 8/20
Redmond, WA (US)) 717/136
. . o . 8,261,270 B2* 9/2012 Papakipos GO6F 9/5027
(*) Notice: Subject to any disclaimer, the term of this 345/503
patent is extended or adjusted under 35 8,271,837 B2 9/2012 Prophete et al.
U.S.C. 154(b) by 0 days. 8,296,490 B2 10/2012 Lietal
(21) Appl. No.: 14/570,767 (Continued)
(22) Filed: Dec. 15,2014 OTHER PUBLICATIONS
(65) Prior Publication Data Liskov et al, “Promises: Linguistic Support for Efficient Asynchro-
US 2016/0170797 Al Tun. 16. 2016 nous Procedure Calls in Distributed Systems”, ACM, pp. 260-267,
’ 1988.*
(51) Imt.ClL .
GOGF 9/46 (2006.01) (Continued)
GO6F 9/48 (2006.01)
GO6F 9/52 (2006.01) Primary Examiner — Anil Khatri
(52) US.CL (74) Attorney, Agent, or Firm — Aaron Chatterjee; Judy Yee;
CPC ... GOGF 9/4843 (2013.01); GO6F 94812 ~ Micky Minhas
(2013.01); GOG6F 9/52 (2013.01)
(58) Field of Classification Search G7) ABSTRACT
CPC ..o GOGF 9/4843; GOGF 9/4812 Examples of the disclosure enable callback operations, such
USPC ..cvvvieciene 718/1, 100-108; 717/100-106 as interrupts, Asynchronous Procedure Calls (APCs), and
See application file for complete search history. Deferred Procedure Calls (DPCs), to be efficiently managed.
In some examples, an emulated thread includes a request for
(56) References Cited a callback operation. When the request is detected, the emu-
US. PATENT DOCUMENTS lated thread an@/ ora cooperating thread associateq with the
callback operation is executed based on an execution mode
6.718.294 Bl 4/2004 Bortfel associated with the callback operation. Examples of the dis-
6,886,162 Bl* 4/2005 McKenney ... GO6F 9/526 closure manage callback operations while efficiently manag-
711/124 ing system resources, including processor load, by providing
7,207,041 B2 4/2007 Elson ..coooovvvvnneee. GOGF 9/5011 at least one cooperating thread that consumes little or no
7949211 B2 7/2007 Wieland et al 71871 processing power until the callback operation is ready to be
7,249,355 B2* 7/2007 O’Neillccccoooe..ne. GOGF 9/5044 executed.
718/100
7,325,083 B2 1/2008 Watt et al. 20 Claims, 6 Drawing Sheets

ETEC
REQUEST FOR CALLBAC!
ap

BASE THREAD

DETERMINE EXECUTION MODE
ASSOCIATED WITH CALLBACK
OPERATION

ABIUS
EXECUTION OF BASE ~>ES
HREA

READ?
No 7%

BLOCKED?

TDENTIFY IDENTIFY CALLBACK THREAD

CALLBACK
THREAD AS
BASE THREAD

70

7
IS
<ERECUTION OF CALLBACR™>
THREAD No
S
BELA

YE!

WAIT TIME

US 9,424,081 B2
Page 2

(56) References Cited
U.S. PATENT DOCUMENTS

8,381,202 B2* 2/2013 Papakipos GO6F 8/45
717/149
8,418,179 B2* 4/2013 Papakipos GOG6F 9/5027
717/140
8,458,716 B2* 6/2013 Altrichter G06Q 10/06
711/170
8,499,299 B1* 7/2013 Jakab ... GO6F 9/45504
710/200

8,516,451 B2 8/2013 Tendler et al.

8,635,612 B2* 1/2014 Oney ..o GOGF 9/45533
718/1

8,719,817 B2* 5/2014 Aswani GOGF 9/45558
718/1

2008/0016396 Al 1/2008 Higashi et al.
2011/0119043 Al 5/2011 Vanspauwen et al.
2011/0258594 Al 10/2011 Syme et al.

OTHER PUBLICATIONS

Ananda et al, “A Survey of Asynchronous Remote Procedure Calls”,
ACM, pp. 92-109, 1992.*

Ganusov et al, “Efficient Emulation of Hardware Prefetchers via
Event Driven Helper Threading”, ACM, pp. 144-153, 2006.*

Beltrame et al, “Concurrency Emulation and Analysis of Parallel
Applications for Multi-Processor System-on-Chip Co-Design”,
ACM, pp. 7-12, 2008 .*

Chen et al, “Scalable Deterministic Replay in a Parallel Full-system
Emulator ”, ACM, pp. 207-217, 2013.*

Bruening et al, “Thread-Shared Software Code Caches”, IEEE, pp.
1-11, 2006.*

Diamos et al, “SIMD Re-Convergence At Thread Frontiers”, ACM,
pp. 477-488,2011.*

Wang et al, “COREMU: A Scalable and Portable Parallel Full-system
Emulator ”, ACM, pp. 213-222, 2011.*

“FreeRTOS Windows Simulator—For Visual Studio or Eclipse and
MingW?”, Published on: Feb. 15, 2014, Available at: http://www.
freertos.org/FreeRTOS-Windows-Simulator-Emulator-for-Visual -
Studio-and-Eclipse-MingW.html, 5 pages.

Wang, et al., “COREMU: A Scalable and Portable Parallel Full-
system Emulator”, In Proceeding of the 16th ACM Symposium on
Principles and Practice of Parallel Programming, Feb. 12, 2011, 10
pages.

Kumar, et al., “A New Methodology for Hardware Software Co-
Verification”, In Proceeding of the Synopsys India Pvt Ltd., Jun. 26,
2013, 8 pages.

* cited by examiner

U.S. Patent Aug. 23,2016 Sheet 1 of 6 US 9,424,081 B2

COMPUTING DEVICE
140
EXECUTION //
MODE DATA [15
CALLBACK /
PROCESSOR PETECTION 11" 160
COMPONENT
130
THREAD
EXECUTION |-
COMPONENT
INTERFACE INTERFACE INTERFACE ~_
MODULE MODULE MODULE MR AREA
\170 \170 \170 N 120
l l 10
PRESENTATION
VL INPUT DEVICE W

\ \ 190 200 \ 100

180

FIG.1

U.S. Patent Aug. 23,2016 Sheet 2 of 6 US 9,424,081 B2

% 220

_ EMULATED CALLBACK
N 230 THREAD THREAD
|
270 280 | 4=,
}\ 220 300\ :
TIME 250
[¢ : <
Y ey
:l¥ 230 320 : 310
N\ |
|
}\ 220 ‘ :
>
»_ 210 240 260

FIG.2 FIG.3

U.S. Patent Aug. 23,2016 Sheet 3 of 6 US 9,424,081 B2

EMULATED CALLBACK
THREAD THREAD
330 B e
— i 350
|
360\ | 250
TIME A/
A
¢ 370
380 |
N |
|
|

U.S. Patent Aug. 23,2016 Sheet 4 of 6 US 9,424,081 B2

|
|
400 CALLBACK ! |
~— THREAD | 310 |
. |
: ; 410
| EMULATED R L
| THREAD |
| / :EMULATED CALLBACK
: | THREAD THREAD | N\
| : / > 310
|
| |
| |
l !
'''''''''''''''''''''''''''''''''''''' | :
CALLBACK: |
THREAD |
~ |
420 i
EMULATED
THREAD EMULATED C?l-LlrLagﬁgK ' ™
THREAD .l 430
| 370
|
a0 !
l i
' :
| |
440\ EMULATED | CALLBACK
THREAD | THREAD
~~>
:
i
K240 \ = 260 I e 390

U.S. Patent Aug. 23,2016 Sheet 5 of 6 US 9,424,081 B2

EXECUTE BASE THREAD 610

!

DETECT REQUEST FOR _
CALLBACK OPERATION 620
EXECUTE BASE THREAD AND/OR

CALL BACK THREAD 630

\ 600

FIG.6

US 9,424,081 B2

Sheet 6 of 6

Aug. 23, 2016

U.S. Patent

£ Il4

QvIdHL ¥Ova11vo
SV dv3yHL 3SY4 AdILN3dI

¢d3a»o01d

“ ay3dHL ¥OvaTIvd M001d

avadHL
MOvaTIvO 3LNJ3IXS

JNIL LIVA

~

av3yH1 3Svd
SV Qv3dHL
AOVETIvI

051 QvayHl 3ASvd X0014

A

———| QvIHLYOvaTIvO AdINIAl | W_Euo_

0c8

NOILYH3dO
MOvATIVI HLIM Q3LVID0SSY
JAOW NOILND3X3 ININY313d

VI4HL 3SY ON

098

0¢

oEI\

» Qv3I¥HL 3SvE 3LN03X3 |

/ooo

US 9,424,081 B2

1
MANAGING CALLBACK OPERATIONS IN
EMULATED ENVIRONMENTS

BACKGROUND

Some computing devices include threads configured to
execute operations. To execute operations not included in the
threads, at least some known computing devices may intro-
duce callback operations, such as an interrupt. Some existing
systems manage threads and callback operations in hardware
(e.g., hardware clock interrupt or thread scheduler), or by
injecting polled checks for pending callback operations into
each thread, such as at instruction boundaries, block bound-
aries, and branches. However, increasing a number of polled
checks generally leads to slower processing times, and
decreasing the number of polled checks generally leads to an
increased risk of untimely interrupt delivery.

SUMMARY

Examples of the disclosure enable at least one callback
operation to be managed. Some examples include a callback
detection component that causes at least one processor to
detect a request for a callback operation and determine an
execution mode associated with the callback operation, and a
thread execution component that causes the at least one pro-
cessor to execute a first thread including the request for the
callback operation and, based on the execution mode, execute
one or more of the first thread and a second thread associated
with the callback operation.

This Summary is provided to introduce a selection of con-
cepts in a simplified form that are further described below in
the Detailed Description. This Summary is not intended to
identify key features or essential features of the claimed sub-
ject matter, nor is it intended to be used as an aid in determin-
ing the scope of the claimed subject matter.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is an example block diagram illustrating a comput-
ing device.

FIG. 2 is an example schematic diagram illustrating a
thread that may be implemented using a computing device
such as shown in FIG. 1.

FIG. 3 is an example schematic diagram illustrating man-
agement of an example callback operation using a computing
device such as shown in FIG. 1.

FIG. 4 is an example schematic diagram illustrating man-
agement of another example callback operation using a com-
puting device such as shown in FIG. 1.

FIG. 5 is an example schematic diagram illustrating man-
agement of a plurality of example callback operations using a
computing device such as shown in FIG. 1.

FIG. 6 is an example flow chart illustrating operation of a
computing device, such as shown in FIG. 1, to manage at least
one callback operation.

FIG. 7 is an example detailed flow chart illustrating opera-
tion of a computing device, such as shown in FIG. 1, to
manage at least one callback operation.

Corresponding reference characters indicate correspond-
ing parts throughout the drawings.

DETAILED DESCRIPTION

Examples of the disclosure enable callback operations,
such as an interrupt, an Asynchronous Procedure Call (APC),
a Deferred Procedure Call (DPC), and/or other operations, to

10

20

25

30

35

40

45

50

55

60

65

2

be efficiently managed. In some examples, an emulated
thread includes a request for a callback operation. When the
request is detected, an execution mode is determined, and the
emulated thread and/or a cooperating thread associated with
the callback operation is executed based on the execution
mode. In some examples, an asynchronous interrupt is simu-
lated without injecting a polling check in a thread.

Aspects of the disclosure enable callback operations to be
effectively handled and/or managed while efficiently manag-
ing system resources by blocking at least one cooperating
thread until the callback operation is ready to be executed. In
this way, a plurality of cooperating threads may be used to
host a plurality of asynchronous callback operations that
increase a functionality of a system while consuming little or
no additional processing power. For example, the cooperating
threads may enable the system to be compatible with games
or applications designed for other processing architectures.
By incorporating a plurality of cooperating threads in the
manner described in this disclosure, some examples increase
system functionality, increase user interaction performance,
reduce processor load, and/or improve operating system
resource allocation.

Referring to FIG. 1, an example block diagram of a system
100 is provided. In the example of FIG. 1, the system 100
includes a computing device 110, such as a gaming console.
While some examples of the disclosure are illustrated and
described herein with reference to the computing device 110
being a gaming console, aspects of the disclosure are operable
with any device that executes instructions (e.g., as application
programs, operating system functionality, or both) to imple-
ment the operations and functionality associated with the
computing device 110. For example, the computing device
110 may include a portable media player, mobile telephone,
tablet, netbook, laptop, desktop personal computer, comput-
ing pad, kiosks, tabletop devices, industrial control devices,
wireless charging stations, electric automobile charging sta-
tions, and other computing devices. Additionally, the com-
puting device 110 may represent a group of processing units
or other computing devices.

The computing device 110 includes one or more computer-
readable media, such as a memory area 120 storing computer-
executable instructions, gaming data, and/or other data, and at
least one processor 130 programmed to execute the com-
puter-executable instructions for implementing aspects of the
disclosure. The memory area 120 includes any quantity of
media associated with or accessible by the computing device
110. The memory area 120 may be internal to the computing
device 110 (as shown in FIG. 1), external to the computing
device 110 (not shown), or both (not shown).

In some examples, the memory area 120 stores, among
other data, one or more applications. The applications, when
executed by the processor 130, operate to perform function-
ality on the computing device 110. Example applications
include mail application programs, web browsers, calendar
application programs, address book application programs,
messaging programs, media applications, location-based ser-
vices, search programs, and the like. The applications may
communicate with counterpart applications or services such
as web services accessible via a network (not shown). For
example, the applications may represent downloaded client-
side applications that correspond to server-side services
executing in a cloud.

In this example, the memory area 120 stores one or more
computer-executable components for automatically manag-
ing a callback including, but not limited to, execution mode
data 140, a callback detection component 150 and/or a thread
execution component 160. While the execution mode data

US 9,424,081 B2

3

140, the callback detection component 150, and the thread
execution component 160 are shown to be stored in the
memory area 120, the execution mode data 140, the callback
detection component 150, and/or the thread execution com-
ponent 160 may be stored and/or executed from a memory
area remote from the computing device 110. For example, the
execution mode data 140, the callback detection component
150, and/or the thread execution component 160 may be
stored in a cloud service, a database, or other memory area
accessible by the computing device 110. Such examples
reduce the computational and storage burden on the comput-
ing device 110.

The processor 130 includes any quantity of processing
units, and the instructions may be performed by the processor
130 or by multiple processors within the computing device
110 or performed by a processor external to the computing
device 110. In some examples, the processor 130 is pro-
grammed to execute instructions such as those illustrated in
the figures (e.g., FIGS. 6 and 7).

In some examples, the processor 130 is transformed into a
special purpose microprocessor by executing computer-ex-
ecutable instructions or by otherwise being programmed. For
example, the callback detection component 150, when
executed by the processor 130, causes the processor 130 to
detect a callback operation targeting the base thread 240 and
determine an execution mode associated with the callback
operation. The execution mode data 140 corresponds to a
plurality of execution modes that may be determined by the
processor 130. Additionally, the thread execution component
160, when executed by the processor 130, causes the proces-
sor 130 to execute the base thread 240 and, based on the
execution mode, execute the base thread 240 and/or the call-
back thread 260. For example, the thread execution compo-
nent 160 causes the processor 130 to execute, block, suspend,
delay, wake, skip (e.g., not execute), or otherwise interact
with one or more threads based on the execution mode.

Based on the execution mode, in at least some implemen-
tations, the thread execution component 160, when executed
by the processor 130, causes the processor 130 to suspend an
implementation of a base operation associated with the base
thread 240, and implement the callback operation 250 while
the implementation of the base operation is suspended. Based
on the execution mode, in at least some implementations, the
thread execution component 160, when executed by the pro-
cessor 130, causes the processor 130 to simultaneously
implement the callback operation 250 with a base operation
associated with the base thread 240. Although processor 130
is shown separate from the memory area 120, examples of the
disclosure contemplate that the memory area 120 may be
onboard the processor 130 such as in some embedded sys-
tems.

In some examples, the computing device 110 includes at
least one interface module 170 for exchanging data between
the computing device 110 and a user, computer-readable
media, and/or another computing device (not shown). In at
least some examples, the interface module 170 is coupled to
a presentation device 180 configured to present information,
such as text, images, audio, video, graphics, alerts, and the
like, to the user. For example, the presentation device 180
may include, without limitation, a display, speaker, and/or
vibrating component. Additionally or alternatively, the inter-
face module 170 is coupled to an input device 190 configured
to receive information, such as user commands, from the user.
For example, the input device 190 may include, without limi-
tation, a game controller, camera, microphone, and/or accel-
erometer. In at least some examples, the presentation device
180 and the input device 190 may be integrated in a common

10

15

20

25

30

35

40

45

50

55

60

65

4

user-interface device (not shown) configured to present infor-
mation to the user and receive information from the user. For
example, the user-interface device may include, without limi-
tation, a capacitive touch screen display and/or a controller
including a vibrating component.

In at least some examples, the interface module 170 is
coupled to computer-readable media and/or another comput-
ing device via a network 200 to enable multi-player gaming
and/or automatic sharing of media content and more among
computing devices. Communication between the computing
device 110 and other computing devices may occur using any
protocol or mechanism over any wired or wireless connec-
tion.

The block diagram of FIG. 1 is merely illustrative of an
example system that may be used in connection with one or
more examples of the disclosure and is not intended to be
limiting in any way. Further, peripherals or components of the
computing device 110 known in the art are not shown, but are
operable with aspects of the disclosure. At least a portion of
the functionality of the various elements in FIG. 1 may be
performed by other elements in FIG. 1, or an entity (e.g.,
processor, web service, server, application program, comput-
ing device, etc.) not shown in FIG. 1.

Referring to FIG. 2, the processor 130 (shown in FIG. 1) is
programmed to execute (or not execute), and adjust an execu-
tion of, a thread 210 based on a type of thread, an execution
mode, and/or any other parameter that enables system 100 to
function as described herein. In this example, the thread 210
is stored in the memory area 120 (shown in FIG. 1). Alterna-
tively, the thread 210 may be stored in an external computer-
readable media, such as a digital optical disc data storage
device.

As shown in FIG. 2, in at least some examples, execution of
the thread 210 adjusts between a running and/or executing
state 220 and a blocked state 230. When the thread 210 is in
the blocked state 230, the thread 210 waits for a trigger and/or
instruction, such as an interrupt, an APC, and/or a DPC, and
consumes little or no processing power while it is waiting for
the trigger and/or instruction. Alternatively, the thread 210
may be in any other state (e.g., a parked state, waiting state, or
sleep state) that enables the system 100 to function as
described herein.

In this example, the thread 210 may be any thread includ-
ing, without limitation, an emulated or base thread or a coop-
erating or callback thread. Referring to FIGS. 3-5, the pro-
cessor 130 (shown in FIG. 1) executes a first, emulated or base
thread 240, detects a request for an asynchronous callback
operation 250, determines an execution mode associated with
the callback operation 250, and executes the base thread 240
and/or a second, cooperating or callback thread 260 associ-
ated with the callback operation 250 based on the execution
mode. The callback operation 250 may be triggered and/or
requested by the base thread 240 and/or by a user. In at least
some examples, the processor 130 associates the callback
thread 260 with at least one parameter associated with the
base thread 240 including, without limitation, stack informa-
tion, thread identify value, and/or processor affinity, such that
the callback thread 260 at least temporarily “impersonates”
the base thread 240 at least when the callback operation 250
is being implemented.

FIG. 3 is an example schematic diagram illustrating a first
segment 270 of the base thread 240 and a first segment 280 of
the callback thread 260. At a first moment 290, in this
example, the base thread 240 is in an executing state and the
callback thread 260 is in a blocked state. At a second moment
300, a request for a first callback operation 310 is determined

US 9,424,081 B2

5

and/or detected, and a first execution mode is determined
based on the first callback operation 310.

In this example, based on the first execution mode, the
processor 130 simulates an interrupt of the base thread 240 by
blocking the base thread 240 (e.g., changing the base thread
240 to the blocked state), and implements the first callback
operation 310 by running and/or executing the callback
thread 260 (e.g., changing the callback thread 260 to the
executing state). In this example, the first callback operation
310 is implemented exactly or immediately after the second
moment 300. Alternatively, the first callback operation 310
may be implemented after some delay after the second
moment 300. For example, in one implementation, the first
callback operation 310 may be implemented after a predeter-
mined delay after the second moment 300. In another imple-
mentation, the first callback operation 310 may be imple-
mented after a variable delay after the second moment 300
(e.g., the first callback operation 310 may be implemented
exactly or immediately after base thread 240 is associated
with a predetermined state and/or milestone. In other
examples, the processor 130 determines not to execute the
callback thread 260 based on the execution mode.

Upon determining and/or detecting a predetermined mile-
stone associated with the first callback operation 310 (e.g.,
completion of the first callback operation 310) at a third
moment 320, the processor 130 awakens the base thread 240
by resuming execution of the base thread 240 (e.g., changes
the base thread 240 to the executing state), and blocks the
callback thread 260 (e.g., changes the callback thread 260 to
the blocked state).

FIG. 4 is an example schematic diagram illustrating a sec-
ond segment 330 of the base thread 240 and a second segment
340 of the callback thread 260. At a first moment 350, in this
example, the base thread 240 is in an executing state and the
callback thread 260 is in a blocked state. At a second moment
360, a request for a second callback operation 370 is deter-
mined and/or detected, and a second execution mode is deter-
mined based on the second callback operation 370.

In this example, based on the second execution mode, the
processor 130 continues and/or resumes execution of the base
thread 240 (e.g., the base thread 240 remains in the executing
state), and implements the second callback operation 370 by
running and/or executing the callback thread 260 (e.g.,
changing the callback thread 260 to the executing state). That
is, in this example, the callback thread 260 is executed simul-
taneously with the base thread 240. In this example, the
second callback operation 370 is implemented exactly or
immediately after the second moment 360. Alternatively, the
second callback operation 370 may be implemented after a
predetermined delay after the second moment 360. In other
examples, the processor 130 determines not to execute the
callback thread 260 based on the execution mode.

Upon detecting and/or determining a predetermined mile-
stone associated with the second callback operation 370 (e.g.,
completion of the second callback operation 370) at a third
moment 380, the processor 130 continues and/or resumes
execution of the base thread 240 (e.g., the base thread 240
remains in the executing state) and blocks the callback thread
260 (e.g., changes the callback thread 260 to the blocked
state).

In some examples, the processor 130 is programmed to
manage any combination of base threads 240, callback opera-
tions 250, callback threads 260, and/or execution modes. For
example, the base thread 240 may include any combination of
the first segment 270 and the second segment 330 in a serial
arrangement, and the callback thread 260 may include any
combination of the first segment 280 and the second segment

10

15

20

25

30

35

40

45

50

55

60

65

6

340 in a serial arrangement. Moreover, in at least some imple-
mentations, the callback thread 260 is a base thread 240 (e.g.,
the callback thread 260 is the emulated thread) for a second
callback thread 390 (FIG. 5) that includes any combination of
the first segment 280 and the second segment 340 in a serial
arrangement, such that the base thread 240, the callback
thread 260, and the second callback thread 390 are in a nested
configuration.

For example, as shown in FIG. 5, a first window 400 is
associated with a request for a first callback operation 310
targeting the base thread 240. In this example, the base thread
240 is the emulated thread, and the callback thread 260
executes the first callback operation 310. A second window
410 is nested within the first window 400 and is associated
with a request for a first callback operation 310 targeting the
callback thread 260. In this example, the callback thread 260
is the base or emulated thread, and the second callback thread
390 executes the first callback operation 310. Additionally or
alternatively, the second window 410 may include a request
for a second callback operation 370 targeting the callback
thread 260, wherein the second callback thread 390 includes
the second callback operation 370.

A third window 420 is associated with a request for a
second callback operation 370 targeting the base thread 240.
In this example, the base thread 240 is the emulated thread,
and the callback thread 260 executes the second callback
operation 370. A fourth window 430 is nested within the third
window 420 and is associated with a request for a second
callback operation 370 targeting the callback thread 260. In
this example, the callback thread 260 is the base or emulated
thread, and the second callback thread 390 executes the sec-
ond callback operation 370. Additionally or alternatively, the
fourth window 430 may include a request for a first callback
operation 310 targeting the callback thread 260, wherein the
second callback thread 390 includes the first callback opera-
tion 310.

A fifth window 440 is associated with a request for a
second callback operation 370 targeting the base thread 240,
wherein the second callback thread 390 includes the second
callback operation 370. In this example, the base thread 240
is the emulated thread, and the second callback thread 390
executes the second callback operation 370. As shown in at
least FIG. 5, the processor 130 is programmed to manage any
combination of base threads 240, callback operations 250,
callback threads 260, and/or execution modes.

FIG. 6 is an example flow chart of a method 600 illustrating
operation of the computing device 110 (shown in FIG. 1) to
manage at least one callback operation. In this example, a
base thread is executed at 610, and a request for a callback
operation is detected at 620. One or more of the base thread
and the callback thread is then executed at 630 based on an
execution mode associated with the first callback operation.

FIG. 7 is an example detailed flow chart of the method 600
shown in FIG. 6. As also shown in FIG. 6, a base thread is
executed at 610, and a request for a callback operation is
detected at 620. In this example, an execution mode associ-
ated with the callback operation is determined at 730, and the
base thread and/or a callback thread associated with the call-
back operation are executed based on the execution mode. For
example, the execution mode may enable system resources,
including processor load and/or memory, to be effectively
managed.

In some examples, each decision in the method 600 is
determined based on the execution mode. For example, in at
least some examples, the execution of the base thread is
adjusted at 740 based on the execution mode. In some imple-
mentations, the base thread is blocked at 750 (e.g., the base

US 9,424,081 B2

7

thread is changed to the blocked state) and, thus, an imple-
mentation of a base operation associated with the base thread
is suspended. In other implementations, the execution of the
base thread resumes (e.g., the base thread remains in the
executing state) and, thus, the implementation of the base
operation associated with the base thread is continued.

In this example, the callback thread associated with the
callback operation is identified at 760 and, in at least some
examples, the execution of the callback thread is adjusted at
770 based on the execution mode. For example, in one imple-
mentation, the callback thread is awakened by executing at
800 the callback thread (e.g., the callback thread is changed to
the executing state). In another implementation, execution of
the callback thread is delayed at 780 by waiting at 790 a
predetermined amount of time before the callback thread is
executed at 800. Alternatively, the execution of the callback
thread may be adjusted at 770 in any manner that enables the
system 100 to function as described herein. In at least some
examples, the callback thread is associated with at least one
parameter associated with the base thread, such that the call-
back thread at least temporarily “impersonates” the base
thread at least when the callback operation is being imple-
mented.

In at least some examples, the execution of the callback
thread is not adjusted at 770 based on the execution mode
(e.g., the callback thread remains in the blocked state). For
example, the processor 130 may determine to not execute the
callback thread. In this example, when the base thread is
blocked, the base thread is awakened by executing at 610 the
base thread, and the processor 130 seeks and/or waits for
another request for a callback operation or the process stops at
870. When the base thread is not blocked (e.g., the base thread
continues to execute), the processor 130 seeks and/or waits
for another request for a callback operation or the process
stops at 870.

In at least some examples, another request for a callback
operation may be detected at 810 during execution at 800 of
the callback thread (e.g., a nested configuration). When a
secondary callback operation targets a primary callback
thread executing a primary callback operation for a base
thread, the primary callback thread is a “base” thread with
respect to the secondary callback operation. Accordingly, in
this example, the primary callback thread is recognized and/
or identified at 820 as a base or emulated thread with respect
to the secondary callback operation. A second execution
mode is determined at 730 for the now-identified base, pri-
mary callback thread (which is a callback thread with respect
to the original base thread) and/or a secondary callback thread
associated with the secondary callback operation.

In this example, a callback thread is blocked at 830 after
completion ofacallback operation. In at least some examples,
it is determined at 840 whether the base thread has a parent
(e.g., whether the “base” thread is a callback thread with
respect to another thread). When a base thread is determined
at 840 to have a parent (e.g., the “base” thread is a callback
thread with respect to another thread), the base thread is
identified at 850 as a callback thread, and the now-identified
callback thread executes and/or completes a callback opera-
tion for its base thread. When a base thread is determined at
840 to not have a parent (e.g., the base thread is not a callback
thread with respect to another thread), it is determined at 860
whether the base thread is blocked. When the base thread is
blocked, the base thread is awakened by executing at 610 the
base thread, and the processor 130 seeks and/or waits for
another request for a callback operation or the process stops at
870. When the base thread is not blocked (e.g., the base thread

20

40

45

50

8

continues to execute), the processor 130 seeks and/or waits
for another request for a callback operation or the process
stops at 870.

As described above, in at least some examples, the execu-
tion of the callback thread is not adjusted at 770 based on the
execution mode. When a base thread is determined at 840 to
have a parent, the base thread is identified at 850 as a callback
thread, and the now-identified callback thread executes and/
or completes a callback operation for its base thread. When a
base thread is determined at 840 to not have a parent, the base
thread is awakened by executing at 610 the base thread when
the base thread is blocked, and the processor 130 seeks and/or
waits for another request for a callback operation or the pro-
cess stops at 870.

The subject matter described herein enables callback
operations to be efficiently managed. For example, in one
implementation, the examples of the disclosure enable a
video game and/or entertainment system to be executed and/
or be compatible with games or applications configured for
other video game and/or entertainment systems. In another
implementation, the examples of the disclosure enable games
or applications configured for a mobile device, such as a
mobile device executing ANDROID brand mobile operating
system software, to be executed and/or compatible with
another mobile device, such as a mobile device executing
WINDOWS brand operating system software. ANDROID
brand mobile operating system software is a trademark of
Google Inc., and WINDOWS brand operating system soft-
ware is a trademark of Microsoft Corporation.

Example computer readable media include flash memory
drives, digital versatile discs (DVDs), compact discs (CDs),
floppy disks, and tape cassettes. By way of example and not
limitation, computer readable media comprise computer stor-
age media and communication media. Computer storage
media include volatile and nonvolatile, removable and non-
removable media implemented in any method or technology
for storage of information such as computer readable instruc-
tions, data structures, program modules or other data. Com-
puter storage media are tangible and mutually exclusive to
communication media. Computer storage media are imple-
mented in hardware and exclude carrier waves and propa-
gated signals. Computer storage media for purposes of this
disclosure are not signals per se. Example computer storage
media include hard disks, flash drives, and other solid-state
memory. In contrast, communication media typically
embody computer readable instructions, data structures, pro-
gram modules, or other data in a modulated data signal such
as a carrier wave or other transport mechanism and include
any information delivery media.

Although described in connection with an example com-
puting system environment, examples of the disclosure are
capable of implementation with numerous other general pur-
pose or special purpose computing system environments,
configurations, or devices.

Examples of well-known computing systems, environ-
ments, and/or configurations that may be suitable for use with
aspects of the disclosure include, but are not limited to,
mobile computing devices, personal computers, server com-
puters, hand-held or laptop devices, multiprocessor systems,
gaming consoles, microprocessor-based systems, set top
boxes, programmable consumer electronics, mobile tele-
phones, mobile computing and/or communication devices in
wearable or accessory form factors (e.g., watches, glasses,
headsets, or earphones), network PCs, minicomputers, main-
frame computers, distributed computing environments that
include any of the above systems or devices, and the like.
Such systems or devices may accept input from the user in any

US 9,424,081 B2

9

way, including from input devices such as a keyboard or
pointing device, via gesture input, proximity input (such as by
hovering), and/or via voice input.

Examples of the disclosure may be described in the general
context of computer-executable instructions, such as program
modules, executed by one or more computers or other devices
in software, firmware, hardware, or a combination thereof.
The computer-executable instructions may be organized into
one or more computer-executable components or modules.
Generally, program modules include, but are not limited to,
routines, programs, objects, components, and data structures
that perform particular tasks or implement particular abstract
data types. Aspects of the disclosure may be implemented
with any number and organization of such components or
modules. For example, aspects of the disclosure are not lim-
ited to the specific computer-executable instructions or the
specific components or modules illustrated in the figures and
described herein. Other examples of the disclosure may
include different computer-executable instructions or com-
ponents having more or less functionality than illustrated and
described herein.

Aspects of the disclosure transform a general-purpose
computer into a special-purpose computing device when con-
figured to execute the instructions described herein.

The examples illustrated and described herein as well as
examples not specifically described herein but within the
scope of aspects of the disclosure constitute example means
for managing callback operations. For example, the elements
illustrated in FIG. 1, such as when encoded to perform the
operations illustrated in FIGS. 6 and 7, constitute example
means for executing a thread, example means for detecting a
request for a callback operation, and example means for
determining an execution mode associated with the callback
operation.

The order of execution or performance of the operations in
examples of the disclosure illustrated and described herein is
not essential, unless otherwise specified. That is, the opera-
tions may be performed in any order, unless otherwise speci-
fied, and examples of the disclosure may include additional or
fewer operations than those disclosed herein. For example, it
is contemplated that executing or performing a particular
operation before, contemporaneously with, or after another
operation is within the scope of aspects of the disclosure.

When introducing elements of aspects of the disclosure or
the examples thereof, the articles “a,” “an,” “the,” and “said”
are intended to mean that there are one or more of the ele-
ments. The terms “comprising,” “including,” and “having”
are intended to be inclusive and mean that there may be
additional elements other than the listed elements. The phrase
“one or more of the following: A, B, and C” means “at least
one of A and/or at least one of B and/or at least one of C.”

Having described aspects of the disclosure in detail, it will
be apparent that modifications and variations are possible
without departing from the scope of aspects of the disclosure
as defined in the appended claims. As various changes could
be made in the above constructions, products, and methods
without departing from the scope of aspects of the disclosure,
it is intended that all matter contained in the above description
and shown in the accompanying drawings shall be interpreted
as illustrative and not in a limiting sense.

Alternatively or in addition to the other examples described
herein, examples include any combination of the following:

executing an emulated thread;

detecting a request for an asynchronous callback operation

the asynchronous callback operation associated with an

asynchronous callback thread;

10

15

20

25

30

35

40

45

50

55

60

65

10

determining an execution mode associated with the asyn-
chronous callback operation;

executing one or more of the emulated thread and the
asynchronous callback thread based on the execution
mode;

adjusting the execution of the emulated thread based on the
execution mode;

suspending an implementation of a base operation associ-
ated with the base thread based on the execution mode;

simulating an interrupt of the emulated thread by blocking
the emulated thread based on the execution mode;

implementing the asynchronous callback operation while
the interrupt is simulated based on the execution mode;

blocking the asynchronous callback thread based on the
execution mode;

resuming execution of the emulated thread based on the
execution mode;

executing the asynchronous callback thread simulta-
neously with the emulated thread based on the execution
mode;

delaying the execution of the asynchronous callback thread
based on the execution mode;

determining not to execute the asynchronous callback
thread based on the execution mode;

associating the asynchronous callback thread with a
parameter associated with the emulated thread;

detecting a request for a second asynchronous callback
operation

the second asynchronous callback operation associated
with the asynchronous callback thread;

the second asynchronous callback operation associated
with a second asynchronous callback thread;

determining a second execution mode associated with the
one of the emulated thread and the asynchronous call-
back thread;

executing one or more of the emulated thread, the asyn-
chronous callback thread, and the second asynchronous
callback thread based on the second execution mode;

a callback detection component that, when executed by at
least one processor, causes the at least one processor to
detect a request for a callback operation;

a callback detection component that, when executed by at
least one processor, causes the at least one processor to
determine an execution mode associated with the call-
back operation;

a thread execution component that, when executed by at
least one processor, causes the at least one processor to
execute a first thread including the request for the call-
back operation;

a thread execution component that, when executed by at
least one processor, causes the at least one processor to
execute one or more of the first thread and a second
thread associated with the callback operation based on
the execution mode;

a thread execution component that, when executed by at
least one processor, causes the at least one processor to
suspend an implementation of a base operation associ-
ated with the first thread based on the execution mode;

a thread execution component that, when executed by at
least one processor, causes the at least one processor to
implement the callback operation while the implemen-
tation of the base operation is suspended based on the
execution mode; and

a thread execution component that, when executed by at
least one processor, causes the at least one processor to

US 9,424,081 B2

11

simultaneously implement the callback operation with a
base operation associated with the first thread based on
the execution mode.

In some examples, the operations illustrated in FIGS. 6 and
7 may be implemented as software instructions encoded on a
computer readable medium, in hardware programmed or
designed to perform the operations, or both. For example,
aspects of the disclosure may be implemented as a system on
a chip or other circuitry including a plurality of intercon-
nected, electrically conductive elements.

While the aspects of the disclosure have been described in
terms of various examples with their associated operations, a
person skilled in the art would appreciate that a combination
of operations from any number of different examples is also
within scope of the aspects of the disclosure.

What is claimed is:
1. A system comprising:
a memory area associated with a computing device, said
memory area storing instructions for managing a call-
back; and
a processor programmed to:
execute an emulated thread;
detect a request for a first asynchronous callback opera-
tion, the first asynchronous callback operation asso-
ciated with a first asynchronous callback thread;

determine a first execution mode associated with the first
asynchronous callback operation; and

based on the first execution mode, adjust the execution
of'the emulated thread and execute the first asynchro-
nous callback thread associated with the first asyn-
chronous callback operation.

2. The system of claim 1, wherein the processor is further
programmed to adjust the execution of the first asynchronous
callback thread based on an identification of the first asyn-
chronous callback thread and the first execution mode.

3. The system of claim 1, wherein the processor is further
programmed to, based on the first execution mode:

simulate an interrupt of the emulated thread by blocking
the emulated thread;

implement the first asynchronous callback operation while
the interrupt is simulated;

block the first asynchronous callback thread; and

unblock the emulated thread.

4. The system of claim 1, wherein the processor is further
programmed to, based on the first execution mode, execute
the first asynchronous callback thread simultaneously with
the emulated thread.

5. The system of claim 1, wherein the processor is further
programmed to, based on the first execution mode, delay the
execution of the first asynchronous callback thread.

6. The system of claim 1, wherein the processor is further
programmed to, based on the first execution mode, determine
not to execute the first asynchronous callback thread.

7. The system of claim 1, wherein the processor is further
programmed to associate the first asynchronous callback
thread with a parameter associated with the emulated thread.

8. The system of claim 1, wherein the processor is further
programmed to:

detect a request for a second asynchronous callback opera-
tion, the second asynchronous callback operation asso-
ciated with a second asynchronous callback thread;

determine a second execution mode associated with the
emulated thread and the first asynchronous callback
thread; and

based on the second execution mode,

12

execute one or more of the emulated thread, the first asyn-
chronous callback thread, and the second asynchronous
callback thread.

9. A method executing on a computing device for manag-

5 ing at least one callback operation, said method comprising:

executing, by a processor, a base thread;

detecting a request for a first callback operation, the first

callback operation associated with a first callback
thread;

10 based on a first execution mode associated with the first

callback operation,

adjusting the execution of the base thread and executing the
first callback thread.

10. The method of claim 9, wherein the execution of the

5 first callback thread is adjusted based on an identification of

the first callback thread and the first execution mode.

11. The method of claim 9, further comprising, based on
the first execution mode, suspending an implementation of a
base operation associated with the base thread.

20 12. The method of claim 9, further comprising, based on
the first execution mode, executing the first callback thread
simultaneously with the base thread.

13. The method of claim 9, further comprising, based on
the first execution mode, delaying the execution of the first

25 callback thread.

14. The method of claim 9, further comprising, based on
the first execution mode, determining not to execute the first
callback thread.

15. The method of claim 9, further comprising associating

30 the first callback thread with a parameter associated with the
base thread.

16. The method of claim 9, further comprising:

detecting a request for a second callback operation, the

second callback operation associated with the first call-

35 back thread; and

based on a second execution mode associated with the

second callback operation, executing the base thread and
the first callback thread.

17. The method of claim 9, further comprising:

40 detecting a request for a second callback operation, the
second callback operation associated with a second call-
back thread; and

based on a second execution mode associated with the

second callback operation, executing the first callback

45 thread and the second callback thread.

18. One or more computer storage media embodying com-
puter-executable components, said components comprising:

a callback detection component that, when executed by at

least one processor, causes the at least one processor to

50 detect a request for a callback operation, and

determine an execution mode associated with the callback

operation; and

a thread execution component that, when executed by the at

least one processor, causes the at least one processor to

55 execute a first thread including the request for the call-
back operation, and,

based on the execution mode, execute a second thread

associated with the callback operation, wherein the
execution of the first thread is adjusted based on the

60 execution mode.

19. The computer storage media of claim 18, wherein the
thread execution component, when executed by the at least
one processor, further causes the at least one processor to,
based on the execution mode, suspend an implementation of

65 a base operation associated with the first thread, and imple-
ment the callback operation while the implementation of the
base operation is suspended.

—

US 9,424,081 B2
13 14

20. The computer storage media of claim 18, wherein the
thread execution component, when executed by the at least
one processor, further causes the at least one processor to,
based on the execution mode, simultaneously implement the
callback operation with a base operation associated with the 5
first thread.

